On the Use of Weighted k-Nearest Neighbors for Missing Value Imputation
نویسندگان
چکیده
منابع مشابه
Imputing missing genotypes with weighted k nearest neighbors.
Missing values are a common problem in genetic association studies concerned with single-nucleotide polymorphisms (SNPs). Since many statistical methods cannot handle missing values, such values need to be removed prior to the actual analysis. Considering only complete observations, however, often leads to an immense loss of information. Therefore, procedures are required that can be used to im...
متن کاملWeighted Local Least Squares Imputation Method for Missing Value Estimation
Missing values often exist in the data of gene expression microarray experiments. A number of methods such as the Row Average (RA) method, KNNimpute algorithm and SVDimpute algorithm have been proposed to estimate the missing values. Recently, Kim et al. proposed a Local Least Squares Imputation (LLSI) method for estimating the missing values. In this paper, we propose a Weighted Local Least Sq...
متن کاملSearch K Nearest Neighbors on Air
While the K-Nearest-Neighbor (KNN) problem is well studied in the traditional wired, disk-based client-server environment, it has not been tackled in a wireless broadcast environment. In this paper, the problem of organizing location dependent data and answering KNN queries on air are investigated. The linear property of wireless broadcast media and power conserving requirement of mobile device...
متن کاملthe use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach
abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...
15 صفحه اولOn Top-$k$ Weighted SUM Aggregate Nearest and Farthest Neighbors in the $L_1$ Plane
In this paper, we present algorithms for the top-k nearest neighbor searching where the input points are exact and the query point is uncertain under the L1 metric in the plane. The uncertain query point is represented by a discrete probability distribution function, and the goal is to efficiently return the top-k expected nearest neighbors, which have the smallest expected distances to the que...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Korean Journal of Applied Statistics
سال: 2015
ISSN: 1225-066X
DOI: 10.5351/kjas.2015.28.1.023